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Abstract. In this paper we show how agent data integrity protections can be
provided in SAgent, which is a security framework designed for comprehensive
protection of mobile agents in JADE. While SAgent was designed for compre-
hensive security protocols with different design and interaction criteria, we show
how efficient integrity-only protections can be seamlessly integrated into SAgent.
In situations where the more challenging problem of working with secret data on
remote hosts is not needed, these integrity protection techniques provide signifi-
cantly better performance than the comprehensive protections, as we demonstrate
through a series of experiments.

1 Introduction

This paper presents the design of a new “security provider” that supports data integrity
protection for SAgent [4], which is a general-purpose agent security framework for
JADE [6]. Protection of the data carried by a mobile agent is a key issue in mobile
agent security, and is concerned with protecting the confidentiality and/or integrity of
data which is used in agent computations. SAgent was designed for comprehensive
protection of confidentiality and integrity of agent data, with the ability to carry se-
cret data that the agents can still use in computations while leaking no information
about the protected data. While the comprehensive protections work well for protecting
small functions, these powerful protocols do not scale well to more complex computa-
tions [2]. For this reason, it’s important to consider the option of protecting just integrity
of the data if working with confidential data isn’t necessary. Note that when we refer to
“integrity-only” protections, we are referring to data which can be used in computations
— confidentiality of data which needs to be carried but not used until the agent returns
to the originator is trivially protected simply by encrypting it with the originator’s public
key, so does not require the kinds of protections which SAgent provides.

In this paper, we provide details of the design and implementation of four integrity
protocols in SAgent. These methods, namely, the Partial Result Authentication Codes
(PRAC) [11], Hash Chaining [7], Set Authentication Code methods [9], and the Modi-
fied Set Authentication Code method [3], protect the integrity of data carried by mobile
agents. This work builds upon the theoretical details of these methods proposed by var-
ious authors as well as our previous work in which we presented a performance eval-
uation of these methods, but which were implemented in an ad hoc manner on a very
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basic mobile code platform [3]. By contrast, the current study uses the popular JADE
platform, and provides a consistent and well-designed approach that allows agent ap-
plication developers to easily take advantage of these protections.

Our results show that significant efficiency gains can be obtained with integrity-only
protections, as compared with the more comprehensive protocols which were explored
in depth in a separate paper [2]. In our previous work on integrity protections [3], we
proposed a common notation to describe various phases of the data integrity methods. In
this paper, we show how these distinct phases can be mapped seamlessly into SAgent.
We conclude with a comparison of the overhead of protecting the confidentiality of
agent data versus protecting the integrity of agent data as well as a discussion of the
trade-offs between security and efficiency for the integrity methods.

2 Previous Work

The work described in this paper involves implementation of four techniques for pro-
tecting the integrity of agent data, which we briefly introduce in this section. For details,
refer to the cited papers. While not all techniques require interaction, we generically re-
fer to protections as “protocols” in order to have a common terminology. Methods that
have been devised to protect the integrity of the data carried by the agent include the
Partial Result Authentication Code [11], Hash Chaining [7], and the Set Authentica-
tion Code [8] methods. Yee proposed the Partial Result Authentication Codes method
[11], whereby the result of the agent’s computation at each host is encapsulated using
a Message Authentication Code (MAC). The result at each host, combined with the
corresponding MAC, is called the Partial Result Authentication Code, or PRAC. This
method requires the agent to generate a secret key (used to calculate the MAC) for
each host, using a one-way function, from an initial secret key given by the originator.
This method ensures that none of the results collected prior to a malicious host can be
modified without detection.

In the Hash Chaining [7] method, this idea is extended to chain the partial result to
the identity of the next host to be visited. This method allows the originator to determine
where exactly the chaining broke if a malicious host manipulates any of the partial
results. This method, while providing stronger security, is not flexible enough to allow
efficient updating of previous data provided by the hosts. New data can be added to the
agent, effectively overriding earlier data, but the old data must be retained in order to
maintain the integrity of the entire chain.

To address this problem and allow data updates, Loureiro, Molva, and Panetrat [9]
devise an original cryptographic technique called a “Set Authentication Code,” which
allows the updating of an integrity proof which is initiated by the originator when the
agent is created. Each host exchanges a secret key with the originator and uses this
key to calculate the MAC on its results, and this MAC is used to update the integrity
proof. The originator can efficiently verify this integrity proof upon the agent’s return.
Unlike hash chaining, a host can remove their own previous data and replace it with new
information, effectively changing data that they have previously provided. Because this
method allows secure updating of agent data, it is useful in dynamic scenarios like
online auctions.
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The Modified Set Authentication Code method was proposed in order to address
some limitations of the Set Authentication Code method [3]. In particular, this technique
modifies the way in which secret keys are managed, which involves using a key that can
be integrated into the set of offers carried by the agent. The secret key is encrypted with
the originator’s public key (carried by the agent) and is then added to the set of offers.

This paper does not offer any new integrity protection protocols, but does provide
a thorough study of the practicality of these protocols in the easy-to-use framework
provided by SAgent. We consider both absolute performance and the trade-offs that can
be made between security and efficiency for these methods.

3 Design

In this section, we describe the design of an “integrity” security provider for SAgent.
We have produced implementations of four protocols that protect the integrity of agent
data, and a secure mobile agent application that requires the protection provided by
these protocols. We briefly describe the salient features of SAgent and then outline the
design methodology used for the protocols and the application.

SAgent is a generic agent security framework that is designed to protect the com-
putations of mobile agent applications. Analogous to the concept of distinct private and
public keys in public key cryptography, SAgent separates the public and private por-
tions of the mobile agent application into distinct pieces. A mobile agent application
has public functionality and information that it needs to perform computations at re-
mote hosts and private information and functionality that is kept by the originator of
the agent and not exposed to other entities. The private information is necessary only
for the final interpretation of the results and does not need to be available in any way
during the agent’s travels. Further, SAgent also distinguishes between a mobile agent
application and a security protocol that protects specific parts of an agent application.
Security protocols are normally defined without regard to the different types of ap-
plications that may use them. Similarly, applications are not necessarily designed for
specific protocols; in fact, some applications may not even require security protection.
This creates two different perspectives of SAgent — one of a programmer that develops
protection techniques for SAgent and the other of a developer who writes applications
for SAgent. The architecture of SAgent is designed so that the security provider and
the application-developer can remain unaware of each other and develop protocols and
applications independently of one another.

Data transfer and usage in SAgent revolves around a generic, intermediate data
format that is not secure but also not application-dependent. The application developer
is responsible for providing translation routines that convert application-specific data
into the intermediate format, and the security provider provides routines which convert
this intermediate format into a secure but protocol-specific representation. Data can
then be operated on in this secure format by going through methods in the generic
public interface, which resolve to the appropriate protocol-specific methods.
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3.1 Design of integrity protocols in SAgent

Since SAgent separates the mobile agent computation into its private and public parts,
we first identify the public and private functionality of each protocol. Because SAgent
provides a clean abstraction of data protection in agents by defining a number of general
security interfaces, each of our protocols implements the core private, public and data
security interfaces of SAgent called SecureFnPublic and SecureFnPublic and
SecureFnData, respectively. Next, the security provider must decide what the se-
cure representation of data will be within SAgent. We define a secure data interface to
represent integrity data within SAgent, which we call IntegrityFnData. The se-
cure application, which we call MinBid, simply consists of a mobile agent that visits
various remote hosts, collecting offers for the price of an item, allowing the hosts to up-
date their offers after seeing the lowest offer, if they so desire. This simple application
simulates an interactive bidding scenario like an online auction, whose participants can
bid against each other for an item. Notice that in contrast to the Maxbid application in
the standard SAgent distribution, the MinBid application allows the hosts to see each
other’s offers since we are interested in protecting the integrity but not the confidential-
ity of the agent data. The MinBid application deals with Integer bids and we provide
routines to translate these bids into a generic form that can be used by the integrity
protocols within SAgent.

We next describe the key components of the public and private interfaces of the
protocols.

– Initialization. The initialization step involves the originator encoding the pub-
lic functionality into the agent. The initialization process also ensures that any
protocol-specific data required by the agent’s public functionality are made avail-
able to the agent. The initialization step involves the originator calling the construc-
tor of the appropriateSecureFnPrivate class, for example,PRACFnPrivate
for the PRAC method.

– Encoding of the Host input. When the mobile agent reaches a host, it interacts
with the host via the host agent. If the host offers a valid bid for the item in question,
the agent encodes the host’s offer in a protocol-appropriatemanner. In this case, this
step involves simply converting the host’s Integer input into an IntegrityFnData
object that can be operated upon within SAgent.

– Evaluation of the input. Once the agent has the encoded host input, it uses its
public functionality to evaluate the input. The specifics of the evaluation vary from
protocol to protocol but every integrity protocol involves the creation of an integrity
proof for the host’s offer. The agent state is updated as a result of this evaluation.

– Movement of the agent. Once the encapsulation process is completed, the agent
migrates to the next host on its itinerary through the secureMove method. The next
host on its itinerary is either another remote host or the originator.

– Finalization. When the agent returns home, it returns its state to the originator in
the form of an IntegrityFnData object which the originator can decode using
the decodeAgentStatemethod. This completes the verification of the integrity
of the offers collected by the agent.
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3.2 Design of a secure Application

The secure MinBid application consists of several classes: a MinBidOriginator, a
MinBidMobileAgent and the host agents. To design this application, we performed
the following steps:

– Decompose the application into its protected and unprotected portions: This
step involves deciding which parts of the application need to be protected. In the
MinBid application, hosts are allowed to update their offer based on the current
minimum bid carried by the agent, so our application keeps track of the minimum
bid in the agent state. The MinBid application protects the integrity of each offer
collected by the agent.

– Create an originator agent: The originator must call the constructor of the ap-
propriate implementation of the SecureFnPrivate interface, passing the pro-
tected application part, i.e., IntegrityMinBid, created earlier. The originator
now retrieves the public part of the application and creates mobile agents which
can carry this public part. After creating the agents, the originator simply waits for
the agent(s) to return after collecting the offers from various hosts.

– Create the mobile agents: The mobile agent interacts with the host, specified by a
HostAgent which supplies its input to the agent. The mobile agent then uses its
public functionality to perform computations on the data at the host, including pro-
tecting the computation in the appropriate manner. Since the MinBid application
allows updates of previous offers, a mobile agent is allowed to visit a host more
than once.

– HostAgent: Since all entities in JADE are agents, we create a HostAgent to repre-
sent the functionality of a remote host in the agent paradigm. The host agent in this
application generates a random bid, based on a seed to a pseudo random number
generator. The purpose of seeding the pseudo random number generator with the
same seed each time is to ensure that the host supplies the same bid each time, so
that we can measure the times consistently. The host simply generates a random
bid, checks if it is greater than its threshold limit and, if so, offers a bid less than
the current minimum.

4 Integrity Protocols

In section 2, we described the integrity protocols briefly. In this section, we present a
more detailed overview of the protocols, identifying the distinct phases of each protocol
and showing how each phase can be integrated seamlessly into the SAgent framework.

4.1 Security Model

In order to compare the data integrity methods, we use the example of a comparison-
shopping agent, cited in mobile agent literature [7]. The agent owner (henceforth known
as the originator) wishes to obtain prices from various servers (online shops) to buy a
certain item. The originator programs the agent to visit different servers, querying them
for the price of the item. The originator goes offline after sending the agent out, while
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the agent visits each host on its itinerary, collecting prices from each host, and returns
to the originator with the set of competing offers. In a competitive bidding scenario,
the agent may visit each host more than once. The originator will buy the item from
the host that offers the lowest price (or highest desirability), based on the agent’s set of
offers. Above all, the originator must be assured that the set of offers is valid, i.e., each
offer in the set is an authentic bid from the particular host, and that no malicious host
modified any competing offer. Each of these protocols has distinct phases: Initial setup
by the originator, initial visit on intermediate hosts, updating of data, and verification
of data integrity. We present a uniform notation developed in our previous work [3] to
formally describe each step of the the protocols.

S0 Originator
Si (i ≥ 1) Hosts on the agent’s itinerary

(Intermediate hosts)
oi Actual offer from Si

Oi Encapsulated offer from Si

h(x) Cryptographic hash function
ri Nonce generated by Si

MACki(x) Message Authentication Code
generated using secret key ki

It should be noted that in this paper, we only provide details about the phases of the
protocols only as they map into SAgent and make no statements about the security
properties. For an extensive discussion of the security properties and features of these
protocols, refer to [3]. The agent visits a sequence of hosts S 1, S2, . . . , Sn, and obtains
an offer oi from each host, where an offer includes not only a price but some indication
of the source of the offer3. Notationally, we say the agent carries a set of offers ω, a set
of encapsulated offers Ω, and a key k, and we use subscripts to denote these values over
time. For example, ωi represents the value of ω after the agent has visited the ith host.

4.2 Partial Result Authentication Codes

The Partial Result Authentication Code (PRAC) method involves the calculation of a
MAC on the offer at each host, using a secret key. It can be easily extended to an
interactive scenario in which hosts bid against each other. Secure updates are possible
using PRACs by allowing the host to retain the key used to calculate the MAC on the
previous offer. The key must be removed from the agent to preserve forward integrity,
but it can be retained securely by the host. If a host wants to update an offer, it simply
uses the previous key and replaces the offer in the data set and the set of encapsulated
offers. Upon agent return, the originator re-computes the MACs after generating the
secret keys for all the visited hosts. If the MACs match, the bid is accepted.

Initialization The initialization phase of this protocol involves the generation of a se-
cret key for the first host to be visited by the agent. This computation corresponds to

3 Note that while we are using a comparison shopping example and the corresponding terminol-
ogy, oi could actually represent arbitrary state information from an agent after visiting Si in
any application.
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the private functionality of the agent and is implemented in the PRACFnPrivate
class which implements the SecureFnPrivate interface of SAgent. The pri-
vate functionality is known only to the originator and is used to generate the se-
cret key for the first host. The agent state is a generic object of type PRACData
and the initial state includes the key for the first visited host. The state is con-
verted into a secure IntegrityFnData object by the setAgentState method of
the PRACFnPrivate class and incorporated into the agent.

Visit to a host When the agent is at a remote host, it retrieves a bid from the host and
calculates a proof of its integrity, which is simply a message authentication code
(MAC) on the offer, using the given secret key. The agent then uses the current
secret key to compute a secret key for the next host in the agent’s itinerary, if it is
a first visit at the host. If it has previously visited the host, the previous key, stored
securely by the host is re-used. Since these computations must be performed by the
agent using information from its public part, this phase corresponds to the public
functionality of the agent and is implemented in the PRACFnPublic class which
implements the SecureFnPublic interface. In particular, this phase corresponds
to the evaluate method of the public interface. At each host, the state of the agent
is updated as a result of the evaluation of the host input. It should be noted that this
evaluation is performed only on protected IntegrityFnData objects.

Verification of integrity When the agent returns, the originator decodes the state of
the agent, converting the protected state into an unprotected object. This phase cor-
responds to the private functionality of the agent and is implemented in the de-
codeAgentState method of the PRACFnPrivate class. The originator computes
the secret keys for all the visited hosts and verifies the integrity of each bid by com-
puting a MAC on the offer with the corresponding secret key. Only upon successful
verification, is a bid accepted.

4.3 Hash Chaining

Karjoth et al. [7] extended Yee’s concept to ensure strong forward integrity, whereby
none of the offers in the agent data can be modified without detection by the originator.
Each offer in the data set is chained to the next one using the identity of the next host
to be visited by the agent as well as a random nonce, encrypted with the originator’s
public key. Upon agent return, for each visited host, the originator decrypts the random
nonce and generates the secret key used for each offer. If the chaining relation fails at a
particular point, all subsequent offers are rejected.

Initialization The initialization phase of this protocol4 involves the generation of a se-
cret key for the first host to be visited by the agent. The secret key is generated
using a random nonce, a random token of the agent instance, and the identity of the
next host to be visited by the agent. Similar to the PRAC method, this computation
corresponds to the private functionality of the agent and is implemented in corre-
sponding HCFnPrivate class. The private information (nonce and token of agent
instance) is thus used to generate the secret key and is known only to the originator.

4 abbreviated as HC
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The agent state is an object of type HCData and the initial state includes the key
for the first host as well as the originator’s RSA public key for use by the agent at
a visited host. The generic state is converted into a secure IntegrityFnData
object and incorporated into the agent.

Visit to a host When the agent is at a remote host, it retrieves a bid from the host and
calculates a proof of its integrity. The integrity proof, again, is a MAC, which is
calculated on the offer, a random nonce generated at the host, and the identity of
the next host to be visited, using the given secret key. The agent then uses the cur-
rent secret key, the current offer and the nonce to compute a secret key for the
next host in the agent’s itinerary. The random nonce is then encrypted using the
originator’s RSA public key. Since this method does not allow secure replacement
of previous offers, these computations must be performed during each visit. Thus,
this phase corresponds to the public functionality of the agent and is implemented
in the HCFnPublic class. This step corresponds to the evaluate method of the
public interface. At each host, the state of the agent is updated as a result of the
evaluation of the host input. As before, this evaluation is performed only on pro-
tected IntegrityFnData objects.

Verification of integrity When the agent returns, the originator decodes the state of
the agent, converting the protected state into an unprotected object. This phase cor-
responds to the private functionality of the agent and is implemented in the de-
codeAgentState method of the HCFnPrivate class. The originator decrypts the
random nonces for each host, computes the secret keys for all the visited hosts and
verifies the integrity of each bid by computing a MAC on the offer and the nonce
with the corresponding secret key. Verification by the originator must be performed
sequentially, i.e., knowledge of the sequence of hosts visited is mandatory for ver-
ification. Successful verification of integrity involves verification of the chaining
mechanism at each host for this method.

4.4 Set Authentication Codes

We present a brief description of the Set Authentication Code5 method. For a detailed
description of the cryptographic mechanisms involved in this method, refer to [8]. Each
visited host Si>0 (i.e., each host except the originator) exchanges a secret shared key k i

with source S0, using the Diffie-Hellman key exchange technique. The originator, S 0,
then sends the agent to visit a set of hosts S1, S2, . . . , Sn with an initial set integrity
value Γ0 and empty data collection list ω0. The set authentication code function, Γ (), is
maintained over the set of the MACs calculated on the offers (i.e., encapsulated offers)
through the use of the insertfn and deletefn functions. This set is conceptually the
same as Ω in the previous methods, but may not be carried with the agent in the set
authentication code method. In this case, the single integrity proof value substitutes
for the set Ω, and revealing individual encapsulated offers in Ω would allow hosts to
modify the integrity proof to change bids.

Initialization The initialization phase of this protocol involves the generation of an
overall integrity proof and the generation of parameters for the Diffie-Hellman key

5 abbreviated as SAC
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exchange. The agent state is an object of type SHData and the initial state includes
the initial overall proof as well as the originator’s Diffie-Hellman public parameters.
The state is converted into a secure IntegrityFnData object and incorporated
into the agent. This computation is performed by the originator and is implemented
in SHFnPrivate class which implements the SecureFnPrivate interface of
SAgent. The private functionality is thus used to generate the initial integrity proof
and the parameters used for generating the proof are kept secret by the originator.

Visit to a host When the agent is at a remote host, it retrieves a bid from the host. It
then uses the originator’s public Diffie-Hellman parameters to complete the Diffie-
Hellman key exchange and generate a secret key. It then calculates a message au-
thentication code (MAC), using the given secret key on the offer. It then uses the
MAC to update the overall integrity proof. The overall integrity proof is modified
securely by replacing the previous offer if the agent re-visits a host. As before,
these computations correspond to the evaluate method of the SHFnPublic class
or the public interface. At each host, the state of the agent is updated as a result of
the evaluation of the host input. The updated agent state includes the overall proof
and the public key of the current host. Again, this evaluation is performed only on
protected IntegrityFnData objects.

Verification of integrity When the agent returns, the originator decodes the state of the
agent, converting the protected state into an unprotected object of type SHData.
This phase corresponds to the private functionality of the agent and is implemented
in the decodeAgentState method of the SHFnPrivate class. The originator com-
putes the secret keys for all the visited hosts using the Diffie-Hellman parameters
and the public keys of the hosts. It then verifies the overall integrity of the bids by
recomputing the overall integrity proof. If these proofs match, the set of offers is
validated.

4.5 Modified Set Authentication Codes

In the Modified Set Authentication Code method6, each secret key is generated entirely
on the visited host and is encapsulated into the agent data after being encrypted with the
originator’s public key. For updates of offers, a host can either re-use its previous secret
key or can generate a new key for each visit, but the host must remember the last key
used in order to “cancel” its previous offer. The remainder of the technique is similar to
the Set Authentication Code method. The originator S0 sends an agent to visit a set of
hosts S1, S2, . . . , Sn with an initial set integrity value Γ and an empty data collection
list ω. None of the offers in the data set can be modified by a malicious host. Since the
secret key is known only to the host and is carried in encrypted form within the agent,
a malicious host cannot retrieve the secret key.

Initialization The initialization phase of this protocol involves the generation of an
overall integrity proof. This computation corresponds to the private functionally
of the agent and is implemented in MSHFnPrivate class which implements the
SecureFnPrivate interface of SAgent. The agent state is an object of type

6 abbreviated as MSAC
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MSHData and the initial state includes the initial overall proof as well as the origi-
nator’s RSA public key. The state is converted into a secure IntegrityFnData
object and incorporated into the agent. The private information used to generate
the initial integrity proof and the corresponding private key are kept secret by the
originator.

Visit to a host At the remote host, the agent retrieves a bid from the host. It generates
a random secret key and encrypts it using the originator’s public key. It then calcu-
lates a message authentication code (MAC), using the given secret key on the offer.
As before the overall integrity proof is updated using this MAC. The overall in-
tegrity proof is modified securely by replacing the previous offer/MAC if the agent
re-visits a host. As before, these computations correspond to the evaluate method
of the MSHFnPublic class or the public interface. At each host, the state of the
agent is updated as a result of the evaluation of the host input. The updated agent
state includes the overall proof and the encrypted secret key used by the current
host. Again, this evaluation is performed only on protected IntegrityFnData
objects.

Verification of integrity When the agent returns, the originator decodes the state of the
agent, converting the protected state into an unprotected object of type MSHData.
This phase corresponds to the private functionality of the agent and is implemented
in the decodeAgentState method of the MSHFnPrivate class. The originator de-
crypts the secret keys used by the visited hosts using its private key. It then verifies
the overall integrity of the bids by recomputing the overall integrity proof. If these
proofs match, the set of offers is validated.

5 Experiments

The experiments were performed on a cluster of seven 2GHz Pentium IV machines, all
running Fedora Core 4 Linux. We used Sun’s Java SDK 1.5 with JADE version 3.2 and
an instrumented version of SAgent 0.9. One machine was designated as the originator
and there were 6 visited hosts. For baseline measurements we used a simple SAgent
provider called Insecure, where the agents simply visited the hosts and performed the
required computations though no integrity protection mechanisms were applied. We
varied the bidding mechanism such that each host was visited multiple times, resulting
in trials in which the number of host visits was 17, 31, 46, 66, 124, 168, 214, 289, 320
and 589. For each combination of parameters, we performed each test seven times, dis-
carded the min and max values, and averaged the remaining results. For all implemen-
tations of data integrity mechanisms, the HMAC-SHA1 function was used to calculate
the MACs on each offer, generating a 160-bit output. 1024-bit keys were used for both
the RSA [10] implementation and the Diffie-Hellman key exchange mechanism [1]. We
used the basic cryptographic algorithms that are part of Sun’s Java Cryptography exten-
sion (JCE), and the Cryptix[5] JCE’s implementation of the RSA algorithm. We used
a modified form of the Diffie-Hellman key exchange [3] which allows the originator to
remain offline, while allowing hosts to still perform the Diffie-Hellman key exchange
with the originator using the parameters for the exchange which are part of the agent
state.
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5.1 Metrics

This section outlines the metrics used for measuring the performance of the integrity
protocols. These metrics include basic protocol times which correspond to the various
phases of the protocols as well as the agent size. In general, agent size increases when
protection mechanisms are applied, so it is interesting to measure the size overhead of
these methods.

– Initialization time: The initialization step involves the originator creating the pub-
lic functionality of the agents, setting the initial agent state, and then sending the
agents out to visit the hosts. This step involves the generation of initial keys for all
the protocols, with a key being generated for the first host to be visited in the PRAC
and Hash Chaining methods and the generation of Diffie-Hellman parameters for
the Set Authentication Code method and the generation of the originator’s RSA
public key for the Modified Set Authentication Code method.

– Agent Computation time: This is time the agent spends on remote hosts, measured
from when the originator sends the agents out to the time when they return. On each
host, the agent retrieves the host’s bid and creates an integrity value on it and adds
the offer to the set of encapsulated offers carried by the agent.

– Per-Visit Computation time: This is the agent computation time, divided by the
number of host visits. This metric gives a measure of the amount of time an agent
spends performing computations on each host that it visits. For the MinBid appli-
cation, the major part of the agent computation which involves the generation of a
key for the host, happens during the agent’s first visit. In subsequent visits, the host
merely replaces it previous offer and updates the integrity value on the offer.

– Verification time: This is the time taken by the originator to verify the integrity of
all the offers collected by the agent. Depending on the method, this step involves
generation of keys for all visited hosts (PRAC and Hash Chaining) or the verifica-
tion of an overall integrity proof for the Set Authentication Code and Modified Set
Authentication Code methods.

– Total Protocol time: This is the total time from start to finish for each of the pro-
tocols. This includes the initialization time, the verification time as well as the total
agent computation time.

– Agent Size: We measure the initial size of the agent after the originator sets its state
and then measure the final size after the agent returns home.

6 Results

In this section, we present the results of experiments with the integrity protocols. In
general, there are two types of bidding applications in which protection of the integrity
of mobile agent data is required: an interactive bidding scenario like an online auction
where the originator allows hosts to update their previous offers and the other in which
the originator does not require updates of previous offers. The interactive-bidding sce-
nario has wider applicability, so we focus on this scenario when performing tests.

Total Protocol Times Figure 1 shows the total times for each of the methods, with
precise values given in the following table. As expected, the increase in protocol
time is proportional to the number of host visits.
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Fig. 1. Total Protocol time vs. Number of Host Visits

Number of host visits Insecure PRAC HC SAC MSAC
17 1.05 2.06 2.395 3.22 2.04
31 1.37 2.26 3.07 3.49 2.38
46 1.65 2.49 3.78 3.85 2.68
66 2.12 3.04 4.89 4.47 3.31
86 2.68 3.64 5.90 5.06 3.91
124 3.87 5.10 8.43 6.53 5.19
168 5.98 7.22 11.88 8.78 7.36
214 9.62 11.13 17.12 12.45 10.79
289 20.08 23.26 29.76 23.0 19.74
320 31.67 33.97 41.85 32.61 30.82
589 80.14 87.12 102.60 86.05 81.67

We notice that the hash chaining method is the least efficient. Because this method
does not allow updates in a secure manner, the agent must carry all previous bids
given by a host to validate the integrity of the offer set, leading to higher over-
all times. The Set Authentication Code and the Modified Set Authentication Code
methods, which use public key cryptography (and allow secure updates of previ-
ous offers without having to keep track of all previous offers), are quite efficient,
requiring just over a minute to visit the hosts 600 times, with per host computation
times of less than 0.2 seconds. They are comparable in efficiency to the simpler
PRAC method, which requires the agent to carry the secret keys as part of its state.
The time overhead due to the integrity mechanisms is very low for all the methods
except the Hash Chaining method.

Next, we break the time down into its various components, and consider the size of the
agents. The results are summarized in the following table.
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Insecure PRAC HC SAC MSAC
Initialization time 0.03 0.04 0.20 0.37 0.21
Verification time 0.32 1.09 5.04 1.05 1.10
Final Size (bytes) 41939 44910 80348 47237 44315

Initialization times These average times for the initialization phase do not vary with
the number of host visits, since the initialization step is independent of the number
of host visits. This step merely consists of the originator setting the initial agent
state and creating the agents. We perform this step offline, so the initialization time
for the protocols includes the time for the originator to create the public portions of
the agent and set the initial state of the agent.

Verification Times The verification times are graphed in Figure 2. The verification
time is proportional to the number of offers collected by the agent. The verification
times for the PRAC, Set Authentication Code, and the Modified Set Authentication
Code methods are comparable and quite low, around 1 second on average, to verify
the integrity of the set of six offers collected by the agent. For the Hash Chaining
method, however, the verification time is much higher, proportional to the number
of host visits, since the method does not allow secure replacement of previous of-
fers. In order to verify the integrity of the offers in the Hash Chaining method, the
originator must calculate the secret keys(which involves an expensive RSA decryp-
tion operation) for each host, and then compute a MAC on each offer, leading to
higher verification times.

Agent Size Figure 3 graphs the initial size of the agent for the various protocols. The
initial size does not show much variation across the protocols and is around 5000
bytes, on average. The final size of the agent is shown in figure 4, and, as expected,
the agent size increases as the number of host visits increases. However, for all
methods except the Hash Chaining method, the increase in agent size is not very
dramatic since these methods allow secure replacement of previous offers. For the
Hash Chaining method, the agent size increases rapidly with increasing number of
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host visits, making it less attractive for interactive-bidding scenarios. For all other
methods, the agent size is a relatively minor overhead.
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Confidentiality versus Integrity We look at per-host times for the confidentiality pro-
tocols and corresponding per-visit computation times for the integrity protocols.

ACCK-1 TX-ECC-4 Insecure PRAC HC SAC MSAC
0.9 2.68 0.06 0.12 0.13 0.19 0.11

For the confidentiality methods, this time is the total agent computation time av-
eraged over the number of visited hosts. For the integrity methods, the key metric
is the number of host visits, i.e., the number of times an agent visits a remote host
in order to update the offers. Notice that times for the confidentiality methods are
much higher than those for the integrity methods. The faster confidentiality proto-
col (ACCK), is about 4.7 times slower than the slowest integrity protocol. We pay
an even higher penalty for the distributed TX protocol. In general, there is a strong
trade-off between security and efficiency when applying protection mechanisms to
agent data and this trade-off is more pronounced for the confidentiality protocols.
Users should consider carefully when to apply protection mechanisms to agent data
and if confidentiality is not a strong requirement, integrity protections can be used.

From the experimental results, we see that the Modified Set Authentication Code method
is the most efficient in the interactive bidding scenario. It also provide strong secu-
rity guarantees and is recommended for use when integrity protection is required. The
PRAC method, though quite efficient, has the serious limitation that the secret key is
part of the agent state. Therefore, when other efficient alternatives are available, the
use of this method is not recommended from a security standpoint. The Hash Chaining
method, though providing strong security protection due to its chaining mechanism, is
less efficient than the other methods. The increase in overall time and agent size be-
comes prohibitive as the number of host visits increases. The Set Authentication Code
method is also quite efficient and provides much of the same security guarantees that the
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Modified Set Authentication method offers, but is vulnerable to the man-in-the-middle
attack due to the use of the Diffie-Hellman key exchange mechanism.

Summarizing, if integrity protection is required for an agent application, the Modi-
fied Set Authentication Code method is the best alternative, both from an efficiency and
security standpoint.

7 Conclusion

In this paper, we presented the design of an integrity “security provider” for SAgent.
Using the clean abstractions of SAgent, we can securely separate the mobile agent
computation into its private and public parts and integrate the various phases of the
integrity protocols into SAgent. This illustrates the generic applicability of the SAgent
framework, which allows the implementation of secure protocols for providing secure
agent solutions. We present results comparing the overhead incurred by the integrity
mechanisms and compare the trade-offs between security and efficiency for the various
methods. In general, the integrity mechanism are all quite efficient, with the Modified
Set Authentication Code method providing the best overall combination of flexibility,
security, and efficiency. When we compare the performance overhead for protecting
the integrity of agent data versus the confidentiality of data, we notice that it is 5–25
times more expensive to protect confidentiality than just integrity. In conclusion, our
results show that it is feasible to securely protect the integrity of agent data in real-
world scenarios like online auctions, even if applications are too large or complex to
use the more comprehensive security protocols.
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